Ocean Rainfall

WITH

Chart and Tables

BY
W. G. BLACK, F.R.M.S.

DIAGRAMS—OCEAN RAINFALL.

$$
1 .=\frac{\text { Shf? }}{}
$$

2. Monthly Rainfall.
3. Curves of Rainfall.
4. Chart of Zones.

$$
\text { 1.2.rseack enc. } 1.8-
$$

OCEAN RAINFALL

W1TH

CHART and TABLES

BY

W. G. BLACK, F.R.M.S.

5

©nese remarks on Rainfall at Sea have been deduced from Sets of ()bservations taken by Rain Gauges on board several vessels of the Royal Navy and Mercantile Marine, within the period of about five years, on both long and short voyages in various seas. The results were tabulatel into sections, belonging to the Nowthern IIemisphere and to the Southern Hemispliere, and both again were divided into columns for each month of the year and summed up into total amounts of Rain, Wet Days, Rate of Rainfall per Wet Day and per Total I)ays, and also per Degree and per 1000 Nautical Miles.

Diugrams. have also been constructed showing the curves of rainfall and wet days for the year, and the rain belts or regions in a chart of the world where rain is more prevalent than in other intervening spaces of latitude. But these are offered for consideration merely as preliminary sketches of what may in future be made out, and are only applicable for a temporary purpose to the present observations.

In the Northern Hemisphere the total rainfall came to 94.16 inches, total wet days to 169 , total dry days to 501 . Rates per wet day of rainfall, 566 inch. Total wet and dry days, 670 . Rate per total days, 141 iuch. Rate per amum, 51.29 inches. Wet days per annum, 92 ; including observations at Foochow.

In the Southern Hemisphere the total rainfall came to 94.70 inches, the total wet days to 253 , and the total dry days to 918 . Rate per wet day of rainfall, 3.30 inch. The total wet and dry days were 1171 , and the rate per total days of rainfall was 110 inch. Rate of rain per amum, $29 \cdot 43$ inches. Wet days per allnum, 80 ; including observations at Fiji Islands.

These figures show that there was heavier rainfall in the Northern Hemisphere than in the Soutliern Hemisphere, but fewer days on which it fell ; that the rate per wet day is greater also in the Northern Hemisphere than in the Southern Hemisphere, as is also the rate per anmum; and that there were more wet days in the Southern Hemisphere than in the Northern Hemisphere at sea, slowing the greater preponderance of drizzly weather in the Southern Hemisphere, and the absence of the equatorial rain belt.

The month of September (North Lutumn) had the heaviest rainfall (26.05 inches) and the greatest number of wet days (33), in the Northern Hemisphere.

The month of April (South Autumn) had the least rainfall (17.68 inehes), and the month of August (South Winter) 35 inehes, the most wet days in the Southern Hemisphere.

The least amount of rainfall in the Northem Hemisphere oecurred in Mareh, 68 inch (North Spring), and the least number of wet days, 5 , in Mareh, also. The least amount of rain in the Southern Hemisphere was - 40 ineh in October (South Spring), with only 1 wet day in October, also.

The Spring may therefore be assumed to be the period of the minimum of rainfall at sea, and the Autumn that of its greatest prevalence, in either Hemisphere at different seasons, but at simultaneous periods of the whole year.

The chart of the curves for the varying quantities of rainfall, wet days, and rates per diem showed that there was a greater eonvergence of the lines to minimum degrees for the four months - November, December, January, and February; but that in March they began to diverge remarkably and to undergo maximum oseillations up and down till October, when they again subsided to an equilibrium of parallelism.

The rates of ruinfull seemed to vary aecording to the greater or lesser quantity of rain falling; and in the Northern Hemisphere was of least rate, $\cdot 136$ inch, in March (North Spring), and highest in Septcmber, •789 inch (North Autumn). In the Southern Hemisphere the rate was least in July, 167 inch (South Winter), and highest, 370 inch, in April (South Autumn).

The curves of wet days seemed to oscillate even more than the eurves of rainfall, and to vary in inverse proportion in either Hemisphere, so that when there were fewer wet days in the Northern Hemisphere, there were more in the Southern Hemisphere; and, on the other hand, when there were more wet days in any season in the Northern Hemisphere, there were fewor in the Southern Hemisphere at the corresponding period of the year.

In reference to latitudes, the hcaviest rainfall was found in the first 7° north of the equator, the demarcation being well defined north and south of this belt-the amounts being 41.72 inehes of rain, 65 wet days, and 642 inch of rate per wet day, and 6.00 inehes per degrce of latitude, and this may be called the equatorial rain belt.

The neat belts or regions of prevalcnee fell between $12^{\circ}-18^{\circ}$ north, and the amounts were 18.38 inehes of rain, 22 wet days, and 83 inch of rate, and 2.62 inehes per degree of latitude ; and in the Southern Hemisphere the belt lay between $13^{\circ}-20^{\circ}$ south latitude, and tho amounts were 23.94 inches of rain, 44 wet days and 540 inch of rate, and 9.99 inches per degree of latitude, and these may be called the north and south tropical rain belts. These rains seemed chiefly to be dependent on the greator prevalence of storms, squalls, and cyclones in these regions in both Hemispheres; while the former were of the more special tropical nature, connected with condensation of the super-saturation of the air with vapour.

An increase, again, of rain took phace in the regions of the Northern romentre trades or brave west winds, but with more drizaly or continuous
damp weather, the figures being for the Northern Hemisphere from $40^{\circ}-51^{\circ}$ north latitude, 16.55 inches of rain, 37 wet days and $\cdot 45$ ineh of rate, and $1 \cdot 3$ s inches per degree; and for the corresponding region in the southern llemisphere from $40^{\circ}-48^{\circ}$ south latitude, $6 \cdot 81$ inches of rain, 33 wet days, $\because=1$ inch of rate, and 75 inch per degree; but this belt is not so satisfactorily defined as the one in the Northern Hemisphere, and these may be called the north and south temperate rain belts.

It may further be assmmed that there might exist between each of these live rany regions corresponding four drier regions of less prevalence of rain, placed over the same oceans and seas, one situated between each rain belt from 40° north latitude to 40° south latitude.

1. A north temperate dry belt would lie between 40° and 18° north latitude, with rainfall of $7 \cdot 63$ inches, wet days 26 , rate per diem 29 inch, rate per legree 36 inch.
2. A north tropical dry recrion, between 12° and 7° north latitude, with rainfall of $6 \cdot 86$ inches, wet days 12 , rate per diem $\cdot 57$ inch, rate per tlegree 1.71 inches.
3. A south tropical dry belt, between equator and 13° south latitude, with rainfall of $18 \cdot 70$ inches, wet days 47 , rate per dien 41 ineh, rate per degree 1.55 inches.
4. A south temperate dry region, lying between $20^{\circ}-40^{\circ}$ south latitude, with rainfall of 16.97 inches, wet days 59 , rate per diem 28 inch, and rate per degree $8 t$ inch. This belt, however; is not so satisfactorily defined as the eorresponding one in the Northern Hemispliere, but is announeed as a probability.

The belts of rainfall need not be assumed to be stationary all the year round, but to be moved towards the equator with the course of the sun on the eeliptic line, and that the present limitation assigned to them in latitude should only be considered as approximate means for a year.

In speculating for an explunution of the rain falling more in these belts than in the intervening latitudes, one may venture to state that part of the aseending vapours in the equatoricl calm belt become condensed in the cooler and rarer upper strata of the atmosphere, above eertain heights, and descend then again as rain.

The north and south tropical rain belts seem to be ehiefly due to rains attending cyclone's, squalls, and storms, which produce disturbanees in the eapacity of the air on these occasions, to retain its normal amount of vapour, and so the surplus is condensed and precipitated.

The north and south temperate rains beyond 40° latitude are aceepted as the remains of the vapours carried on by the ronterter trades from the equatorial calm belt, which are deposited on arriving on the cooler surface of the sea, after their deseent at the crossing of the winds in the eahms of Cancer and Capricorn.

There seemed some likelihood of assuming that there might be a reciprocal or vicarious action between the weather forees in the Northern and Southern Hemispheres, which would cause wet weather to prevail
only alternately in each, so that it might be guessed that when it was wet weather in Britain, there would be dry weather or droughts in Australia or South Africa, and vice rysa. It further appeared that there was much less rain shown to fall in the open sea, even in the tropics, than had been stated by former geographers, as Petermann; as the mean amount for all the voyages in both Hemispheres only reached 40.66 inches per annum. The rainfall was also evidently increased in the gauges when the ships were in harbour, cruising round coast or islands, as seen by the amounts, 10.78 inches for 32 days at anchor at Foochow on the river Min in China, and $27 \cdot 642$ inches for 134 days at anchor among the Fiji Isles.

The total mmber of days occupied by the period of the observations was $1841-225=$ both at sea and at anchor, and of these 422 were wet days and 1419 were dry days (taking up a period of 5 years, 17 days, however, including staying at Ports where no observations were taken, which amounted to 166 days altogether), of this total 670 days belonged to the Northern Hemisphere, with 169 wet days and 501 dry days; and 1171 belonged to the Southern Memisphere, with 253 wet days and 918 dry days.

The total amount of rain for the period of five years came to $188 \cdot 86$ inches for both voyages and anchorages, which would give a rate of 40.36 inches per annum, somewhat about double the annual amount of rain for London, $21 \cdot 15$ inches.

The total number of days included in the royages actually in the open sea was 1392 , with 345 wet days and $144 \cdot 773$ inches of rainfall, which gives a rate of 419 inch per wet day, and 37.93 inches per annum ; and 1047 dry days, which will give 274 dry and 91 wet days per annum, somewhere about half the usual rate of wet days for London.

The number of nautical miles traversed amounted to 105,442 , which would give 119 miles per day as the rate of sailing, or about 5 miles per hour ; and a rate of rainfall of 017 inch per hour, and $\cdot 235$ inch per 60 nautical miles sailed. Of the total miles, 80.087 belonged to the Northern Hemisphere, and 85.561 to the Southern Hemisphere; and the rate of rainfall per 100 miles in the Northern Hemisphere came to 114 inch, and in the Southern Hemisphere to 077 inch.

Further, on estimating the amounts of rain by degrees of latitude, it was found that the rate for the 51° north latitude was $1 \cdot 787$ inches, and that for the 48° south latitude was 1.381 inches, and the total rate for the whole 99° north and south latitudes was $1 \cdot 570$ inches per degree.

When there is a rain gauge placed on each side of the ship instead of on deck, in its axis, it is observed that the lee one generally gathers more rain than the weather one, and this happens oven in steamers where no sails are used, so that the peculiarity may not be attributed to the action of the sails alone.

The cause more probably is due to the action of the wind on the weather side of the ship rising up from the sea level underneath the weather
gauge an I hriving the rain across the theek, and then down again on the lee side of the ship past the tee gatuge to the water level. This was observal during the voyages of M.M.s. Prarl and the following instances may be quoted:-3rd September 1853, sonth hadian Ocean-Starboard grauge, $\because 2$ inch of ranl, lee site, wimd N., N. IE., to N.; port giluge, 13 inch of rain, weather side; course east. 16 th september 1873 , AustraliaWind N.W. to W', starbord gauge, 12 inch of rain, weather side; port gauge, 20 inch of rain, lee side; course south. 17 th September 1873 Wind S.W. to S.W. ; course enst ; both gauges, 18 inch of rain ; wind aft. When the ship was lying at anchor in the roadstead of Levuka, and swung from the winds, there were little differences, only between the obscrations of either gauge during rainy weather with winds, which became still less when rains fell during calms.

The five belts of rain regions, equatorial, north and south tropical, and north and south temperate, it may be remarked, only as yet would apply in a general way to the Atlantie, Indian, Chinese, and Australian waters, as they have not yet been localised in each sea, from sparsity of observations. Sutficient observations have not either been obtained for the use of the Pacific Ocean, so that no belts have been drafted out on it in the charts. These results of the rainfall at sea, tend to support the views of Captain Mutry as to the transference of the winds and vapours from one Hemisphere to another by a crossing at the equator, inasmuch as it is scen that the greater rainfall of the Northern Hemisphere might be supplied from the greater extent of ocean surface in the Southern Hemisphere, and the less rainfall of the Southern Hemisphere may be due to the greater extent of land in the Northern Hemisphere with a smaller water exposure.

It may be remarked how very little rain falls in the temperate latitudes at sea on the further side of 40° in either Hemisphere, ealled the region of the brave west winds or roaring forties.

Some months in these regions in the diagrams appear void of collected rain, as March, April, and November in the Northern Memisphere, and as the April, November, and Jecember in the Southern Hemisphere ; but this statement may be modified by future observations.

It need not be infered that the weather was dry or fine in these months, but that some of it was drizzly or misty with rainfall insuffieient to be registered by the instruments on board the ships.

The stormy periods off C'ipes Ayullus und Hom in the three southern winter months of June, July, and August in the temperate regions of the Southern Hemisphere have but small amounts of rain to show for these perturbations of the weather, being only 1.57 inches, 1.22 inches, and 3.71 mehes each respectively, with total of 6.50 inches of rain.

In the four stormy winter montlis of November, December, January, and February, off the British and Irish coasts, in the temperate regions, there is also a noteworthy defieiency of rain exhibited by the amounts of 0.0 inches, $\cdot 65$ inch, 59 ineh, 25 inch, respectively; and onty 1.49 inches for the four months in the Northern Hemisphere further illustrate the statement.

The four ruiney montho of April, May, August, and september, in the tropical reyions of the Southern Hemisphere appear to be coincident with the four showery months of April, May, July, and Soptember in the Northern Hemisphere, as shown by the amounts of $7 \cdot 59$ inches, 9.48 inches, 11.83 inches, 23.01 inches respectively in the Northern Hemisphere, and by 15.36 inches, 12.90 inches, 5.49 inches, and 5.91 inches in the Southern Hemisphere, the total amounts being 51.91 inches for the Northern Hemisphere, and 39.66 inehes for the Southern Hemisphere.

The three wet mouths in the temperate regions at sea in the Northern Hemisphere are Jume, August, and October, with the amounts of 3.96 inches, $4 \cdot 84$ inches, and $3 \cdot 62$ inches of rain, and total of $12 \cdot 42$ inches.

The three wet moutles in the temperate regions at sea in the Southern Hemisphere are February, June, and August, with amounts of 2.69 inches, 1.57 inches, and 3.71 inches of rain respectively, and total of 7.97 inches.

The chriest month at sea in both Hemispheres seems from these returns to be December, with a total of only $2 \cdot 14$ inches of rain and 7 wet days; and this corresponds with a winter in the Northern Hemisphere and a summer in the Southern Hemisphere.

The solstice, therefore, at this period of the year would appear to be attended generally with dry weather over all the seas, in this notice, both North and South of the equator; but the June or North Summer solstice again will appear to be, on the eontrary, a showery one, as shown by a total of 13.93 inches of rain and 32 wet days.

On looking at the chart of the vorld with the five rain belts drafted in their assumed latitudes, it will be seen that in the North Atlantic Ocean the north lemperate rain belt impinges on the coasts of Britain, France, and Spain, Newfoundland and Nova Seotia ; that the Cape Verd and Windward Islands lie in the north tropical rain belt; and that the equatorial belt stretches between Guiana, on the west side, to Liberia and Guinea, on the east. In the South Atlantic Oeean, St Helena is included in the sonth troprical rain belt stretching between Brazil and Benguela; while the south temperate belt, starting from Pitagonia, envelopes Gough Island and others to the eastward. In the Iutian Oceun we may notice the north tropical rain belt stretehing between Arabia and Bombay on one side of India, and between the coasts of the Circars and Pegu on the other side, and the equatorial belt ineluding the Maldive Islands and parts of Ceylon and Suniatra.

The south tropical bell here is assumed to envelope the Mauritius Islands, and to lie between Madagascar and North-west Australia; and the south temperate belt goes from the Cape to Tasmania, covering the Crojets and Kerguelen Islands. In the Chinese and Austratian Seas we suppose the north tropical rain belt to pass over the Philippine Islands, the equatorial belt to stretch east from Singapore over liomeo and Gilolo, the south tropical belt to start from North Quecusland to the Fiji Islands, and, lastly, the south temperato rain bolt to pass over 'Iasmania and Now Zealand and give them their moist elimates as in Great Britain. It may next be inferred that there should be four dry belts to correspond
with the five wet belts, placed over the same ocenns and seas, one situated between each rain belt from 40° north latitude to 40° south latitude.

1. The north temperate dry belt, lying between 40° and 18° north latitude, in which will lic the Azores Islands, the Canaries and Bermuda, tho coasts of Carolina, Spain, and Morocco, the Mediterranean, Red Sea, Bays of Arabia and liengal, and the Chinese coasts and lormosa Island.
2. The north tropicul dry zone, between 12° and 7° north latitude will be seen investing Sierra Leone, the Orinoeo and Laceadive Islands, Cannanore and Pondicherry in Intia, Nicobar Islands and Tenasserim, Saigon in Chima, and Palawan and Caroline Islands in the Pacifie Ocean.
3. In the south tropical diry belt, between the equator and 13° south latitude, may be placed Pernambuco and Fernando Island, Ascension Island and Angola in the Atlantic, Zanzibar, Seychelles Islands, and Java in the Indian Occan, and New Guinea and Solomon Islands in the Pacific Ocean.
4. In the south temperate diy zone, between $20^{\circ}-40^{\circ}$ south latitude, may be seen the River Plate, Tristan d'Acunha, the Cape, the eoasts of West, South, and East Australia, and the north part of New Zealand with Auckland ; but this and its allied wet zone are not so satisfactorily defined as the corresponding ones in the Northern Hemisphere.

Some remarks are required respeeting the rainfall observed at the Fiji Islands by H.M.S. Pearl, which is recorded separately on the summary, as there were no data available to fix the positions aceurately, and some were obviously taken under anchorage.

The lipariest rainfall of the seven months, of Oetober, November, December, January, February, March, and April, nccured in February, 12.05 inches, and the least in March, 2.12 inches; and the greatest mumber of vet days were in January, 17, and the least in $\Lambda_{\text {pril, }} 6$; and the heariest rate of rainfall was in February, 7.53 inch, and the lowest rate in March, 212 inch.

These results are supposed to lee coincident with the presence of the smuth fropical rain belt and its retreat towards the equator ; and after the summer solstice in the Sonthern Hemisphere is passed and the summer rains have ceased, the south tempercte dry belt advances from the sonth tropic line, northwards. There are also a separate set of observations for the harbour of Foochow, which is situated on the Min river, at the south-enst coast of China, off the coast. They were taken during the summer montlis of May and June, when the sonth-west monsoon prevails, and brings agood deal of vapour from the heated China seas to be condensed on the hilly consts of the Continent. June liad a beary rainfall of $7 \cdot 17$ inches, 10 rainy days, and a high rate of 747 inch per diem, much the same as the maximum at ather places on the Northern Iemisphere.

STATEMENT OF VOYAGES OF SHIPS.

1. The Melbourne was a sailing ship of 1636 tons burden, having three full-rigged masts, and performed - (1) Voyage from Liverpool to Bombay, vin the Cape, from 5 th Nay to 20 th September 1868 ; distance, 15,175 miles ; days out, 138 ; rain collected, 17.33 inches. (2) Voyage from Bombay to Liverpool, from 1st April to 5th September 1869 ; distance, 14,469 miles; days out, 157 ; rain collected, $9 \cdot 00$ inches. The position of the rain gauge was not stated in the $\log _{g}$ books, but it was probably amidships.
2. The Northfleet was a sailing ship of three masts, 876 tons burden, commanded by Captain Symington (as was the Melboume), and became historically famous afterwards for its appalling shipwreck, when it was run down at night by the Spanish steanter Murillo while at anchor off Dungeness Point, 22nd January 1873. It performed-(1) Voyage from London to Hong Kong, via the Cape, from 15 th December 1865 to 8 th May 1866; distance, 17,147 nautical miles; days out, 144 ; rain collected, 27.70 inches. (2) Voyage from Macao to London, via the Cape, from 2nd July to 27 th October 1865 ; distance, 15,270 nautical miles; days out, 118 ; rain collected, $17 \cdot 82$ inches. (3) Voyage from Gravesend to Sydney, via the Cape, from 17 th March to 28th June 1864; distance, 13,862 nautical miles; days out, 100 ; rain collected, 8.35 inches. (4) Voyage from Sydney to Hong Kong, via Solomon Islands, from 20th September to 10th October 1864 ; distance, 6206 nautical miles; days out, 57 ; rain collected, 18.00 inches. (5) Voyage from Hong Kong to Calcutta, via Singapore, from 15 th November to 11 th December 1865 ; distance, 2906 nautical miles; days out, 26 ; rainfall, 3.09 inches. The rain gauge was placed on a standard, 10 feet high, on the front of the poop-deck and in the axis of the ship, and was therefore free from the maximum effects of rolling and lee wind currents, and it was of five-inch diameter and swung on gimbals.
3. The Hong Kong was a screw steamer of iron, 1881 tons burden, and schooner-rigged, Captain Symington commanding. She performedVoyage from Foochow to Gravesend, via the Suez Canal route, from 22nd June to 18 th August 1873 ; days out, 52 ; nautical miles, 10,273 ; rainfall, 3.66 inches. The rain gauge was similar to the last ship, one of five inches diameter, but the position is not stated, aud the slip has subsequently been wrecked.
4. H.M.S. Sylvia was a surveying vessel of the lioyal Navy of 887 tons burden, barque-rigged, with auxiliary screw, commanded by Capt. B. St John. The voyage was from Plymouth to Hong liong, via the Suez Canal, from th February to 12 th May 1874; days out, 98 ; nautical miles not stated, but estimated at 10,066 ; rainfall collected, $6 \cdot 890$ inches. The position of the rain gauge is not stated in the \log books, but it was one of six inches diameter poised on a pivot, and the records were generally taken the day after the fall of rain; but in the Norflofleet they seem to have been taken the same day.
5. R.M.S. Jueu, Captain J. A. Martyn-Voyages from Liverpool to Nuw York and back, via Queenstown, from loth May to loth ()ctober $1: 73$; days out, 126 ; days of rain, 23 ; minfall collected, 12.02 inches; distance, 3016 nautical miles. Nine Voyages recorded will give total distance, $27 \cdot 144$ nautical miles to and fro over the Atlantic. Tomnage, 2697. She was one of tho Cunard Line of mail steamers, a large three-masted ship, with screw propeller. The position of the rain gauge is not stated, but it was one of six inches diameter swung on a pivot, and the observations here recorded were taken the day following the rainfall.
6. H. M.S. Pearl, Captain Goodenough in command, was a screw corvette of three masts, 1469 tons burden, and is remarkable historieally for the fate which befell her commander, who was assassinated by the uatives of the Santa Cruz Islands. There were two rain gauges on this ship, stationed, one on the port and the other on the starboard side, so that one was frequently, when at sea, on the lee side and the other on the windward side of the ship. One, of six inches diameter, was poised oll a pivot, and the other, of five inches diameter, was hung on gimbals, but both registered like quantities of rain under similar circumstances. When the ship was at anchor they would both swing to the wind in the same line as the ship, and present each their fronts to the prevailing wind, and, therefore, nearly in equally favourable positions to eatch the rain driven aft. When, however, there was a wind more or less abeam, the lee rain gauge generally caught more rain than the windward one, sometimes as much as one-quarter or one-third more, so that in estimating the day's rain it will be quite fair to take the mean between the two. This difference is assumed to be due to the wind ascending the sides of the ship from the sea level past the weather gauge, and descending on the lee gauge down the lee side of the ship to the sea level again. The voyages were (l) from England to Fiji Islands, via the Cape and New Zealand, 11 th January to 16 th November 1873 ; distance, 13,054 nautical miles; days out, 168 ; rain, $6 \cdot 148$ inches. Various voyages in the Pacific and Australinn Seas, 17 th November 1873 to 12 th August 1875 ; days out, 634 ; rain collected, 46.97 inches ; distance, not stated.

Some arllitional remarks on Ocean Raiufall may further he found in "Symons' Metcorologieal Magazine" for April 187\%, with a register of a raill gauge on $M . S / . S$. Sylvia on a voyage from England to C'hina.
"Nature," vol. vii., page 123.-Letter on Ocean Rainfall by Mr Miller.
"Nature," Qth January 1873. - Letter from Mr Symons on Ocean Rainfall and the Challenger.

[^0]: .

RAINFALL AT SEA． SUMMARY—REGLONAL． 1864－1875．

				Regions．	Regious．							
				Atlantic． Indian． Pacific East．		Atlantic． Indian． vific East．						
$\begin{aligned} & \stackrel{\rightharpoonup}{\mathrm{H}} \\ & \stackrel{\rightharpoonup}{\infty} \end{aligned}$		$\begin{aligned} & \stackrel{\leftrightarrow}{\infty} \\ & \stackrel{\infty}{\leftrightarrows} \end{aligned}$	$\begin{aligned} & \text { O. } \\ & \dot{\sim} \\ & \dot{\sigma} \end{aligned}$			$\begin{array}{cc} \stackrel{\rightharpoonup}{\infty} & \text { y. } \\ \dot{\vdots} & \dot{8} \end{array}$			$\begin{aligned} & \underset{\substack{o \\ \infty \\ \infty \\ \infty}}{ } \end{aligned}$		$\begin{aligned} & \stackrel{\rightharpoonup}{\infty} \\ & \dot{\Phi} \\ & \dot{\omega} \end{aligned}$	
范	18	\＆	茧	出 ¢ ¢ ¢ ¢ ¢		19		可	$\stackrel{\square}{\omega}$	$\stackrel{\rightharpoonup}{\square}$	岀	曷镸范
$\dot{\oplus}$	$\begin{aligned} & 0 \\ & \dot{\oplus} \\ & \hline \mathbf{E} \end{aligned}$	岕	$\begin{gathered} 0 \\ \stackrel{\omega}{\oplus} \end{gathered}$					$\begin{aligned} & \circ \\ & \stackrel{y}{i n} \end{aligned}$	$\underset{\substack{\dot{\infty} \\ \hline}}{\substack{2}}$	$\underset{\substack{e \\ \dot{C} \\ \hline}}{ }$	¢	
范	$\stackrel{\rightharpoonup}{\circ}$	！	$\stackrel{\rightharpoonup}{\dot{\omega}}$	언）				$\stackrel{\rightharpoonup}{\dot{\omega}}$	｜	$\begin{aligned} & \text { N } \\ & \vdots \\ & \hline \end{aligned}$		＂
	$\underset{\infty}{\infty}$	岕	告			茄名		$\stackrel{-1}{-1}$	๕	ご	$\stackrel{\text { 宸 }}{\text { ¢ }}$	曷药
	9	－＇	－	¢		○ 范		$\stackrel{4}{4}$	\％	$\stackrel{8}{9}$	$\stackrel{\rightharpoonup}{\circ}$	¢
$\left\lvert\, \begin{gathered} \text { eg } \\ \stackrel{+}{\text { in }} \end{gathered}\right.$		$\begin{array}{\|l\|l} \text { 忥 } \\ \text { cis } \end{array}$	$\begin{aligned} & \stackrel{\leftrightarrow}{心} \\ & \stackrel{\leftrightarrow}{4} \\ & \stackrel{1}{4} \end{aligned}$		$\begin{aligned} & \stackrel{\circ}{8} \\ & \text { ث } \end{aligned}$			$\begin{aligned} & \stackrel{~}{~} \\ & \stackrel{4}{*} \end{aligned}$	$$	$\stackrel{Y}{\dot{\Xi}}$	$\begin{gathered} \stackrel{山}{\stackrel{~}{\leftrightarrows}} \\ \stackrel{+}{4} \end{gathered}$	或管
						orth Lat．	$\stackrel{\rightharpoonup}{\circ}$ $\stackrel{1}{0}$ $\stackrel{y}{\circ}$					魯

RAINFALL AT SEA．

MONTHLY SUMMAKY：－－1864－1875．

$\stackrel{\rightharpoonup}{E}$	$\stackrel{\rightharpoonup}{0}$	$\stackrel{\rightharpoonup}{0}$		Atlantic． Indian，l＇acific l＇astern．			Atlantic． Indian，I＇acific Last．		$\begin{gathered} \text { V } \\ \stackrel{3}{5} \\ \vdots \\ \overline{3} \\ \vdots \end{gathered}$	こ
$\stackrel{\Xi}{5}$		$\begin{aligned} & \text { 苞 } \\ & \vdots \\ & \vdots \end{aligned}$								
\％	0	$\left\|\begin{array}{r\|} \hline-1 \\ \vdots \\ \dot{\circ} \end{array}\right\|$	$\stackrel{7}{9}$	$\underset{\sim}{¢} \underset{\sim}{\underset{\sim}{\sim}}$					$\left\lvert\, \begin{gathered} \text { ひ } \\ \text { i } \\ \text { के } \end{gathered}\right.$	案
$\stackrel{\square}{\square}$	$\stackrel{\leftrightarrow}{=}$	$\left\|\begin{array}{c} \stackrel{\rightharpoonup}{6} \\ \vdots \\ -1 \end{array}\right\|$	$\ddot{\therefore}$						$\stackrel{\text { 心 }}{\sim}$	$\begin{aligned} & \text { 管 } \end{aligned}$
$\stackrel{\square}{\underline{-}}$	$\underset{\sim}{c}$	$\begin{array}{l\|} \stackrel{y}{2} \\ \dot{B} \end{array}$	$\stackrel{4}{1}$	－	感				¢ ¢	苞
$\stackrel{\rightharpoonup}{5}$	\because	$\left.\begin{gathered} 6 \\ \vdots \\ \vdots \\ \vdots \end{gathered} \right\rvert\,$	\because		¢ 0 ¢				$\stackrel{c}{6}$	
\＃	$\bar{\square}$	$$	$\stackrel{\text { \％}}{\sim}$		家				$\stackrel{\circ}{\text { ¢ }}$	는
\square $=1$ $=1$	\pm	$\begin{aligned} & 10 \\ & \vdots \\ & \vdots \end{aligned}$	$\stackrel{\square}{\dot{c}}$		皆				－	\cong
	$\dot{\text { ¢ }}$	$\begin{aligned} & \text { 范 } \\ & \dot{8} \end{aligned}$	$\dot{\square}$				｜lll｜		$\stackrel{c}{c}$	位
苋	\star	$\begin{aligned} & Y \\ & \vdots \\ & \hline \end{aligned}$	$\stackrel{\square}{4}$				$\left\lvert\, \begin{aligned} & \text { N } \\ & \text { ¢ } \\ & \text { ¢ }\end{aligned}\right.$		\because	会
ご	\％		¢						∞	$\begin{aligned} & \text { n } \\ & \stackrel{y}{6} \end{aligned}$
\because	$\overrightarrow{.}$	范	$\stackrel{\square}{\circ}$	－ー艹்	$\stackrel{\dot{8}}{8}$				¢ 15	\bigcirc
－	B	\because	10	（1）			－		1	号
$\stackrel{\text { \％}}{\sim}$	10	$\begin{aligned} & c_{\dot{G}}^{0} \\ & \dot{g} \end{aligned}$	81						∞	¢
$\stackrel{\rightharpoonup}{\stackrel{\rightharpoonup}{\sigma}}$	亦	$\begin{aligned} & \text { 佥 } \\ & \hline \end{aligned}$		¢．$\quad \stackrel{\text { 灾 }}{\text { ¢ }}$	兂					－
					¢		安			皆

				969.96 I	¢\＃6I	¢п8＇も91	$\frac{9871}{98 t}$	＇stvas）
		$\begin{array}{r} \text { rəS } 7 V \\ \text { moquv } \end{array}$	в！риі nоч	$\begin{aligned} & 2 \mathrm{~L} \cdot \mathrm{Z} \\ & 88.01 \end{aligned}$	$\begin{aligned} & \text { II } \\ & \sigma \varepsilon \end{aligned}$	$\begin{aligned} & \text { пбG } \\ & \text { лочәи } \end{aligned}$	$\begin{aligned} & 0-\bar{c} \\ & \mathfrak{c} \mathrm{I}-\mathrm{g} \mathrm{l} \end{aligned}$	suot 188L－U897S ＂8uoy \％uo H S＂S
9LSI＇6I ： 8 n V	8L8I＇LI AON		ع！！exisn －s ！！！！d	29．87	$\begin{aligned} & 9 \mp \varepsilon \\ & \ddagger \& 9 \end{aligned}$	$\begin{aligned} & \text { vas 壮 } \\ & 068^{\prime \prime ⿰ 丿} \text { I } \end{aligned}$	189－901	sSect 686 ＇anoqur． H ＇sәise 0 ，snowe Λ
\＆L8I＇9I ${ }^{10} \mathrm{~N}$	\＆L8L＇ti aunf			$889 \cdot 9$	$\begin{aligned} & 881 \\ & 89 \end{aligned}$	$\begin{aligned} & \text { ras 7V } \\ & \mp 80^{\circ} \mathrm{\varepsilon L} \end{aligned}$	681－2\％	＇suoJ，69ŋI－Sosans －urezs＂Ireəd＂S＂If＂H
	＂،＇9 • dos 	$\begin{array}{r} \text { uedref } \\ \text { suoy SuOH } \end{array}$	ч7nous $\kappa_{\text {IX }}$	$\begin{aligned} & 9 L \cdot ६ \\ & 9 L \cdot 9 \end{aligned}$	$\begin{aligned} & 06 \\ & 86 \end{aligned}$	．пчэッท $990^{\prime} 01$	$\begin{aligned} & \mathrm{LI}-8 \\ & 08-6 \mathrm{I} \end{aligned}$	suol 288 －Seanns
\＆L8I＇01＇70			Hio $^{10}{ }^{\mu 2} \mathrm{~N}$ ［oodaən！T	69 \％I	961	もも1「して	801ーモを	suoJ 000 G －meazs IK＇y＇earef
\＆ 281 ＇81 ${ }^{\circ} \mathrm{On} \mathrm{V}$	\＆L81＇6亿 จum¢	риәsәлвıض	${ }^{\text {почгоо娄 }}$	99．8	69	\＆ $26^{\circ} 0 \mathrm{~L}$	67－6	＇suol 1881－me97S
998I＇ 26 ＇rek 9981 ＇II＇əə（I		$\underset{\text { eq7 }}{\substack{\text { suoy } \\ \text { surg } \\ \hline \text { Suof }}}$	 	$\begin{aligned} & \ddagger \mathrm{fc} \cdot \mathrm{z} \\ & 60 \cdot 8 \end{aligned}$	$\begin{aligned} & 9 g \\ & 97 \end{aligned}$	$\begin{aligned} & 0 \& \mp^{\prime} \text { G } \\ & 9066^{\prime} \end{aligned}$		
¥98L＇9L ${ }^{70}$ O			Кәup \wedge_{S}	07．8I	29	$908^{\text {＇}} 9$	¢ $\varepsilon-9 \%$	
798I＇8\％aun \mathcal{L}		\triangle ®up S_{S}	＇риәsəлеху	10.8	80I	698＇¢I	¢2－6\％	
	$998 \mathrm{I}{ }^{6} \mathrm{~K} \mathrm{~S}_{5} \mathrm{n}_{\mathrm{S}}$	${ }^{\text {uopuot }}$	Оroriv	EL． 2 I	2II	$02 \pi \times 9$ I	¢8－98	
9981＇8 Krid	998I＇¢I ${ }^{\circ} \mathrm{O} \mathrm{J}$		${ }_{\text {иориот }}$	29．46	ゅゅ	2もI「とI	82－29	Suot 92 ＇Suples 간
698 I ＇ q • də $\mathrm{S}^{\text {S }}$	698L＇I tud V	［oodıəı！${ }^{\text {a }}$	Krquog	I 2.01	291	$69 \chi^{\prime}$ ¢	$261-08$	
898I＇06＇dəS	8981 ＇9 ¢rıle	Sequag	Ioodaən！${ }^{\text {I }}$	86.91	881	GLI＇9I	86 －9 ${ }^{\text {¢ }}$	
${ }^{0}$	［00］	${ }^{0} \mathrm{~L}$	w0，${ }^{\text {un }}$	＇seqouI ＇u！̣y		＇sol！	 －Ava ${ }^{2 \theta} \mathrm{M}$	－sitiqs
＊รวาย		$\cdot \theta .8 \mathrm{~B} \in 0 \Lambda$						

-

75.

$\begin{array}{ll}\text { 1. Equatorial-Between } 0^{\circ}-7^{\circ} \mathrm{N} . \mathrm{L} . & \text { 2. North Tropical-From } 12^{\circ}-18^{\circ} \mathrm{N} . \mathrm{L} . \\ \text { 3. South Tropical-From } 13^{\circ}-20^{\circ} \text { S.L. } & \text { 4. North Temperate-From } 40^{\circ}-61^{\circ} \mathrm{N} . \mathrm{L} . \\ \text { 5. South Temperate-From } 40^{\circ}-48^{\circ} \text { S.L. } & \text { (Drier Zones intervene between.) }\end{array}$

RAINFALL AMOUNTS.

4th N. Temp. 16.55 in., 37 Wet Days. 45 in., rate per diem.
1st Equat. 41.72 in., 65 Wet Days. 64 in., rate per diem.

[^0]: "Nature," 16th January 1873. -Letter from Mr Black on Rain Gauges on board Ships.
 "Nature," 27th Novernber 1873. - Letter from Captain Goodenough on Rain Gauges at riea.

